Главная » Без рубрики » Теория хаоса
Опубликовано: 12.04.2021

Теория хаоса

Теория хаоса — математический аппарат, описывающий поведение некоторых динамических систем, подверженных, при определённых условиях, явлению, известному как хаос, которое характеризуется сильной чувствительностью поведения системы к начальным условиям; поведение такой системы кажется случайным, даже если модель, описывающая систему; примерами подобных систем турбулентные потоки, биологические популяции, общество как система коммуникаций и его подсистемы: экономические, политические и другие социальные системы.

Теория хаоса гласит, что сложные системы чрезвычайно зависимы от первоначальных условий и небольшие изменения в окружающей среде ведут к непредсказуемым последствиям.

Математические системы с хаотическим поведением являются детерминированными, то есть подчиняются некоторому строгому закону и, в каком-то смысле, являются упорядоченными. Такое использование слова «хаос» отличается от его обычного значения. Существует также такая область физики, изучающая недетерминированные системы, подчиняющиеся законам квантовой механики.

Пионерами теории считаются французский физик и философ Анри Пуанкаре (доказал теорему о возвратах), русские математики А. Н. Колмогоров и В. И. Арнольд, Мозер, построившие теорию хаоса, называемую КАМ (теория Колмогорова-Арнольда-Мозера). Теория вводит понятие (в том числе, странных аттракторов как притягивающих канторовых структур), устойчивых орбит системы (т. н. КАМ-торов).

В экономике

Теория хаоса в последнее время является одним из самых модных подходов к исследованию рынка. К сожалению, точного математического определения понятия хаос пока не существует. Сейчас зачастую хаос определяют как крайнюю непредсказуемость постоянного нелинейного и нерегулярного сложного движения, возникающую в динамической системе. Согласно теории хаоса, если вы говорите о хаотичном движении цены, то вы должны иметь ввиду не случайное движение цены, а другое, особенно упорядоченное движение. Если динамика рынка хаотична, то она не случайна, хотя и по-прежнему непредсказуема. Непредсказуемость хаоса объясняется в основном существенной зависимостью от начальных условий. Применительно к невозможности делать долгосрочные прогнозы погоды существенную зависимость от начальных условий иногда называют «эффектом бабочки»«Эффект бабочки» указывает на существование вероятности того, что взмах крыла бабочки в Бразилии приведет к появлению торнадо в Техасе. Один из главных выводов теории хаоса, таким образом, заключается в следующем – будущее предсказать невозможно, так как всегда будут ошибки измерения, порожденные в том числе незнанием всех факторов и условий. То же самое по-простому – малые изменения и/или ошибки могут порождать большие последствия.

Еще одним из основных свойств хаоса является экспоненциальное накопление ошибки. Согласно квантовой механике начальные условия всегда неопределенны, а согласно теории хаоса – эти неопределенности будут быстро прирастать и превысят допустимые пределы предсказуемости. Второй вывод теории хаоса – достоверность прогнозов со временем быстро падает. Данный вывод является существенным ограничением для применимости фундаментального анализа, оперирующего, как правило, именно долгосрочными категориями.

Первые элементы теории хаоса появились еще в XIX веке, однако подлинное научное развитие эта теория получила во второй половине XX века, вместе с работами Эдварда Лоренца (Edward Lorenz) из Массачусетского технологического института и франко-американского математика Бенуа Б. Мандельброта (Benoit B. Mandelbrot). Эдвард Лоренц в свое время (начало 60-х годов XX века, работа опубликована в 1963 году) рассматривал, в чем возникает трудность при прогнозировании погоды. До работы Лоренца в мире науки господствовало два мнения относительно возможности точного прогнозирования погоды на бесконечно длительный срок. Первый подход сформулировал еще в 1776 году французский математик Пьер Симон Лаплас. Лаплас заявил, что «…если мы представим себе разум, который в данное мгновение постиг все связи между объектами во Вселенной, то он сможет установить соответствующее положение, движения и общие воздействия всех этих объектов в любое время в прошлом или в будущем». Таким образом, Лаплас и его сторонники говорили, что для точного прогнозирования погоды необходимо только собрать больше информации обо всех частицах во Вселенной, их местоположении, скорости, массе, направлении движения, ускорении и т.п. Второй подход к возможности прогнозирования погоды раньше всех наиболее четко сформулировал другой французский математик, Жюль Анри Пуанкаре. В 1903 году он сказал: «Если бы мы точно знали законы природы и положение Вселенной в начальный момент, мы могли бы точно предсказать положение той же Вселенной в последующий момент. Но даже если бы законы природы открыли нам все свои тайны, мы и тогда могли бы знать начальное положение только приближенно. Если бы это позволило нам предсказать последующее положение с тем же приближением, это было бы все, что нам требуется, и мы могли бы сказать, что явление было предсказано, что оно управляется законами. Но это не всегда так; может случиться, что малые различия в начальных условиях вызовут очень большие различия в конечном явлении. Малая ошибка в первых породит огромную ошибку в последнем. Предсказание становится невозможным, и мы имеем дело с явлением, которое развивается по воле случая».В этих словах Пуанкаре мы находим постулат теории хаоса о зависимости от начальных условий.

Последующее развитие науки, особенно квантовой механики, опровергло детерминизм Лапласа. В 1927 году немецкий физик Вернер Гейзенберг открыл и сформулировал принцип неопределенности. Этот принцип объясняет, почему некоторые случайные явления не подчиняются лапласовому детерминизму. Гейзенберг показал принцип неопределенности на примере радиоактивного распада ядра. Так, из-за очень малых размеров ядра невозможно знать все процессы, происходящие внутри него. Поэтому, сколько бы информации мы не собирали о ядре, точно предсказать, когда это ядро распадется невозможно. Какими же инструментами располагает теория хаоса. В первую очередь это аттракторы и фракталы. Аттрактор (от англ. to attract – притягивать) – геометрическая структура, характеризующая поведение в фазовом пространстве по прошествии длительного времени. Здесь возникает необходимость определить понятие фазового пространства. Итак, фазовое пространство – это абстрактное пространство, координатами которого являются степени свободы системы. Например, у движения маятника две степени свободы. Это движение полностью определено начальной скоростью маятника и положением. Если движению маятника не оказывается сопротивления, то фазовым пространством будет замкнутая кривая. В реальности на движение маятника влияет сила трения. В этом случае фазовым пространством будет спираль. Самым простым типом аттрактора является точка. Такой аттрактор характерен для маятника при наличии трения. Независимо от начальной скорости и положения, такой маятник всегда придет в состояние покоя, т.е. в точку. Следующим типом аттрактора является предельный цикл, который имеет вид замкнутой кривой линии. Примером такого аттрактора является маятник, на который не влияет сила трения. Еще одним примером предельного цикла является биение сердца. Частота биения может снижаться и возрастать, однако она всегда стремится к своему аттрактору, своей замкнутой кривой. Третий тип аттрактора – тор.

Несмотря на сложность поведения хаотических аттракторов, иногда называемых странными аттракторами, знание фазового пространства позволяет представить поведение системы в геометрической форме и соответственно предсказывать его. И хотя нахождение системы в конкретный момент времени в конкретной точке фазового пространства практически невозможно, область нахождения объекта и его стремление к аттрактору предсказуемы. Первым хаотическим аттрактором стал аттрактора Лоренца. На рисунке 1. он показан в левом нижнем углу.

Аттрактор Лоренца рассчитан на основе всего трех степеней свободы — три обыкновенных дифференциальных уравнения, три константы и три начальных условия. Однако, несмотря на свою простоту, система Лоренца ведет себя псевдослучайным (хаотическим) образом. Смоделировав свою систему на компьютере, Лоренц выявил причину ее хаотического поведения – разницу в начальных условиях. Даже микроскопическое отклонение двух систем в самом начале в процессе эволюции приводило к экспоненциальному накоплению ошибок и соответственно их стохастическому расхождению. Вместе с тем, любой аттрактор имеет граничные размеры, поэтому экспоненциальная расходимость двух траекторий разных систем не может продолжаться бесконечно. Рано или поздно орбиты вновь сойдутся и пройдут рядом друг с другом или даже совпадут, хотя последнее очень маловероятно. При схождении траектории сближаются и начинает проявляться эффект близорукости – возрастает неопределенность крупномасштабной информации. При расхождении траекторий наоборот, они расходятся и проявляется эффект дальнозоркости, когда возрастает неопределенность мелкомасштабной информации. В результате постоянной сходимости-расходимости хаотичного аттрактора неопределенность стремительно нарастает, что с каждым моментом времени лишает нас возможности делать точные прогнозы.

Здесь же необходимо отметить, что скорость схождения-расхождения является мерой хаоса, т.е. численным выражением того, насколько система хаотична. Другой статистической мерой хаоса служит размерность аттрактора. Таким образом, можно отметить, что основным свойством хаотических аттракторов является сходимость-расходимость траекторий разных систем, которые случайным образом постепенно и бесконечно перемешиваются Здесь проявляется пересечение фрактальной геометрии и теории хаоса. И, хотя одним из инструментов теории хаоса является фрактальная геометрия, фрактал – это противоположность хаоса. Главное различие между хаосом и фракталом заключается в том, что первый является динамическим явлением, а фрактал статическим. Под динамическим свойством хаоса понимается непостоянное и непериодическое изменение траекторий. Фрактал – это геометрическая фигура, определенная часть которой повторяется снова и снова, отсюда проявляется одно из свойств фрактала – самоподобие. Другое свойство фрактала — дробность. Дробность фрактала является математическим отражением меры неправильности фрактала. Фактически все, что кажется случайным и неправильным может быть фракталом, например, облака, деревья, изгибы рек, биения сердца, популяции и миграции животных или языки пламени.

Хаотический аттрактор является фракталом. Как бы мы не изменяли размер аттрактора, он всегда останется пропорционально одинаковым. В техническом анализе типичным примером фрактала являются волны Эллиота, где также работает принцип самоподобия. Дополнительная идея, заложенная во фрактальности, заключается в нецелых измерениях.

Как мы знаем из определения, бифуркации возникают при переходе системы от состояния видимой стабильности и равновесия к хаосу. Примерами таких переходов являются дым, вода и многие другие самые обычные природные явления. Так, поднимающийся вверх дым сначала выглядит как упорядоченный столб. Однако через некоторое время он начинает претерпевать изменения, которые сначала кажутся упорядоченными, однако затем становятся хаотически непредсказуемыми. Фактически первый переход от стабильности к некоторой форме видимой упорядоченности, но уже изменчивости, происходит в первой точке бифуркации. Далее количество бифуркаций увеличивается, достигая огромных величин. С каждой бифуркацией функция турбулентности дыма приближается к хаосу. С помощью теории бифуркаций можно предсказать характер движения, возникающего при переходе системы в качественно иное состояние, а также область существования системы и оценить ее устойчивость.

К сожалению, само существование теории хаоса трудно совместимо с классической наукой. Обычно научные идеи проверяются на основании предсказаний и их сверки с реальными результатами. Однако, как мы уже знаем, хаос непредсказуем, когда изучаешь хаотическую систему, то можно прогнозировать только модель ее поведения. Поэтому с помощью хаоса не только нельзя построить точный прогноз, но и, соответственно, проверить его. Однако это не должно говорить о неверности теории хаоса, подтвержденной как в математических расчетах, так и в жизни. На сейчас еще не существует математически точного аппарата применения теории хаоса для исследования рыночных цен, поэтому спешить с применением знаний о хаосе нельзя. Вместе с тем, это действительно самое перспективное современное направление математики с точки зрения прикладных исследований финансовых рынков.


Также вас может заинтересовать:

d9fa9010